Starting a week today, I'm offering my entire "ML Foundations" curriculum as a series of 14 live, interactive workshops via O'Reilly Media. The first five classes are open for registration; two are already waitlist-only, so grab a spot now:
• Jul 14 — Intro to Linear Algebra (waitlisted)
• Jul 21 — LinAlg II: Matrix Tensors (5 spots remaining)
• Jul 28 — LinAlg III: Eigenvectors (waitlisted)
• Aug 12 — Intro to Calculus (143 spots remaining)
• Aug 18 — Calc II: AutoDiff (148 spots remaining)
REGARDING THE WAITLIST: I have a made a request with O'Reilly to increase the maximum class size from 600 students to 1000, so if you sign up for a waitlisted class now, you should still be able to get in.
Overall, there will be four subject areas covered:
• Linear Algebra (3 classes)
• Calculus (4 classes)
• Probability and Statistics (4 classes)
• Computer Science (3 classes)
Sign up opens about two months prior to each class. All 14 training dates, running from next week through December, are provided at jonkrohn.com/talks
A detailed curriculum and all of the code for my ML Foundations series is available open-source in GitHub here.
Filtering by Category: Professional Development
Financial Data Engineering
This week's guest is Doug Eisenstein, an exceptionally clear and content-rich communicator. He fills us in on the complexity of engineering a coherent source of truth for financial models, integrating hundreds of data sources.
Topics covered in the episode include:
• A breakdown of the primary financial sectors and departments
• Why data source integration for finance is wildly complicated
• Specific data engineering approaches that resolve these issues including entity resolution, knowledge graph mapping and tri-temporality.
20 years ago, Doug founded the consulting firm, Advanti and they have since become a critical provider of solutions to complex data engineering problems faced by some of the world's largest banks and asset managers including Morgan Stanley, Bank of America, Citibank and State Street.
Listen or watch here.
The Product Rule for Derivatives
Today's video is on the Product Rule, a relatively advanced Derivative Rule. Only a couple such rules remain and then we move onward to Automatic Differentiation with PyTorch and TensorFlow.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
machinelearning,datascience,calculus,mathematics,python
Exercises on Derivative Rules — Topic 56 of Machine Learning Foundations
Today's YouTube video uses five fun exercises to test your understanding of the derivative rules we’ve covered so far: the Constant Rule, Power Rule, Constant-Multiple Rule, and Sum Rule.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
If you’d happen to like a detailed walkthrough of the solutions to all the exercises in this video, you can check out my Udemy course called Mathematical Foundations of Machine Learning. See jonkrohn.com/udemy
Setting Yourself Apart in Data Science Interviews
For this week's guest episode, I interrogated Andrew Jones on his data science interview secrets. If you want to improve your interview performance — especially if you're in a data-related career — this episode's for you.
Andrew has held a number of senior data roles over the past decade, including at the tech giant Amazon. In those roles, Andrew interviewed hundreds upon hundreds of data scientists, leading him to create his Data Science Infinity educational program, a curriculum that provides you with the hard and soft skills you need to set yourself apart from other data scientists during the interview process.
Listen or watch here.
The Constant Multiple Rule for Derivatives
Continuing my short series on Differentiation Rules, today’s video covers the Constant Multiple Rule. This rule is often used in conjunction with the Power Rule, which was covered in the preceding video, released on Monday.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
The Power Rule for Derivatives
On Thursday, I published a video on the Constant Rule, the first video in a series on Differentiation Rules. Today, we continue the series with the Power Rule, arguably the most common and most important of all the rules.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
Top Resume Tips
In recent weeks, I've received several messages from folks struggling to get callbacks for Data Scientist interviews. In reviewing their résumés, I realized there are five specific tips that I highly recommend adhering to.
You can listen or watch here.
The Derivative of a Constant
This and the next several videos will provide you with clear and colorful examples of all of the most important differentiation rules. We kick these rules off with the Constant Rule.
The derivative rules are critical to machine learning as they allow us to find the derivatives of cost functions. These cost-function derivatives are concatenated into the "gradient" that we descend to allow ML models to learn.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
Derivative Notation
In today's YouTube video, we detail all of the most common notation for derivatives. This lays the foundation for a fun, immediately forthcoming series of videos covering all of the major differentiation rules. Enjoy!
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
How Derivatives Arise from Limits
In today's video, we use hands-on code demos in Python to find the slopes of curves with the Delta Method. While finding these slopes, we derive together — from first principles — the most important Differential Calculus formula.
This video is part of a thematic segment of videos on Differentiation. In the forthcoming videos, we’ll cover derivative notation and a series of useful rules for differentiation.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
How to Thrive as an Early-Career Data Scientist
Getting started in data science? Today's episode is for you! Sidney Arcidiacono is absolutely crushing her first year in the field; we discuss the options for getting started in the field and top tips for early-career success.
Trained as a phlebotomist (blood-sample collection), Sidney was inspired by the potential for machine learning to revolutionize healthcare, so she jumped feet first into a full-time computer science degree at Make School, specializing in the data science track. From no familiarity with code or models just a year ago, Sidney's immersion has paid off: She's now fluent in the modern data science software stack and landed a summer data science internship at GreenLight Biosciences, Inc., an RNA-molecule therapeutics firm (like the Pfizer/BioNTech/Moderna vaccines).
Sidney is terrifically sharp and engaging; I think you'll enjoy hearing from her as much as I did during filming.
Watch or listen here.
The Delta Method
In today's video, we use a Python code demo to develop a working understanding of the Delta Method, a centuries-old technique that enables us to determine the slope of a curve.
This video is the first from a thematic segment of videos on Differentiation. In Thursday's video, we'll build on what we covered today to derive — and deeply understand — the most common, most important equation in differential calculus.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
Peer-Driven Learning
"Peer-driven" learning — where you are formally taught by your coworkers — not only results in team members learning key new skills, but can have added benefits like team bonding, confidence, and innovation. Something to try!
Today's episode is directly inspired by a LinkedIn post by Laura Rodriguez. She tagged me in the post, citing a SuperDataScience episode on communication and relating it to her workplace at ForwardKeys. Thank you, Laura!
The 20% of Analytics Driving 80% of ROI
Today’s episode is with freakin' David Langer, people!! (So obviously it's brilliant, witty, and full of laughs.) He fills us in on the most powerful 20% of analytics — the analytics that drive 80% of companies’ return on investment.
Publishing under his Dave on Data brand, Dave's YouTube channel is top-notch, with several videos that have over a million views (and the thumbnails are hilarious; check 'em out). He is an exceptionally accomplished data scientist and software engineer, including spending nearly a decade at Microsoft's Global HQ, where his titles included principal software architect, principal data scientist, and director of analytics.
Topics in the episode include:
Surprisingly powerful modeling approaches in spreadsheet tools like Excel
The SQL databases we'll need if the data sets we're working with are too big for spreadsheets
Why R programming is easy and should be our default language choice for moderate to advanced statistical analysis
How companies can maximize value from machine learning
Listen or watch here.
Exercises on Limits
Final YouTube video from my thematic segment on Limits out today! It's a handful of comprehension exercises. Starting Thursday, we'll begin releasing videos from a new Calculus segment, on derivatives and differentiation.
We release new videos from my "Calculus for Machine Learning" course on YouTube every Monday and Thursday. The playlist is here.
The Machine Learning House
In last week’s Five-Minute Friday, I discussed how, in the data science field, the learning never stops. But there’s one big counterpoint: The foundational subjects that underlie the field barely change at all, decade after decade.
These subjects — linear algebra, calculus, probability, statistics, data structures, and algorithms — build a strong foundation for your “Machine Learning House”. Today's Five-Minute Friday articulates my perspective that investing time in studying these foundational subjects will reap great dividends throughout your data science career.
You can listen or watch here.
Calculating Limits
Today's video introduces Limits, a key stepping stone toward understanding Differential Calculus. This one has lots of interactive Python code demos and paper-and-pencil exercises to ensure learning the subject is both engaging and fun.
We release new videos from my "Calculus for Machine Learning" course on YouTube every Monday and Thursday. The playlist is here.
Machine Learning at NVIDIA
This week's guest is absolute rockstar Dr. Anima Anandkumar, who's both professor at prestigious Caltech and director of ML research at NVIDIA. The episode is exceptionally content-rich but also lots of fun; Anima was a joy to film with.
In the episode, Anima fills us in on:
The cutting-edge interdisciplinary research she carries out (applying highly optimized mathematical operations to allow state-of-the-art ML models to be executed on NVIDIA's state-of-the-art GPUs)
How this blending of leading software and leading hardware enables world-changing innovations across disparate fields, from healthcare to robotics
What it's like in the workweek of a researcher bridging the academic and industrial realms
The open-source data science tools and techniques that she most highly recommends
Listen or watch here.
Calculus Applications
New YouTube video out today! In this one, I provide specific examples of how calculus is applied in the real world, with an emphasis on applications to machine learning.
The YouTube playlist for my "Calculus for Machine Learning" course is here.