In this week's guest episode, wildly intelligent and meticulously communicative Maureen Teyssier, Ph.D. explains what Knowledge Graphs are, why they're so powerful, and how to grow a flourishing data science team.
In more detail, in today’s episode we cover:
• The theory and applications of Knowledge Graphs, a cool and powerful data type at the heart of much of Maureen’s work at Reonomy
• The data science techniques that Reonomy use to flow data through extremely high-volume pipelines, enabling them to efficiently apply models to their massive data sets
• What Maureen looks for in the data scientists that she hires and the tools and approaches she leverages in order to grow a highly effective data science team
• The differences between data scientists, data analysts, data engineers, and machine learning engineers.
• Maureen’s fascinating academic work in which she used gigantic supercomputers to simulate solar systems and galaxies
Maureen is Chief Data Scientist at Reonomy, a very well-funded New York start-up — they’ve raised over 100 million dollars — that is transforming the world of commercial real estate with data and data science. Prior to working in industry, Maureen was an academic working in the field of computational astrophysics; she obtained her PhD from Columbia University in the City of New York and then carried out research at Rutgers University in New Jersey.
Listen here.
Filtering by Category: ML Foundations
Derivative Notation
In today's YouTube video, we detail all of the most common notation for derivatives. This lays the foundation for a fun, immediately forthcoming series of videos covering all of the major differentiation rules. Enjoy!
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
How Derivatives Arise from Limits
In today's video, we use hands-on code demos in Python to find the slopes of curves with the Delta Method. While finding these slopes, we derive together — from first principles — the most important Differential Calculus formula.
This video is part of a thematic segment of videos on Differentiation. In the forthcoming videos, we’ll cover derivative notation and a series of useful rules for differentiation.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
The Delta Method
In today's video, we use a Python code demo to develop a working understanding of the Delta Method, a centuries-old technique that enables us to determine the slope of a curve.
This video is the first from a thematic segment of videos on Differentiation. In Thursday's video, we'll build on what we covered today to derive — and deeply understand — the most common, most important equation in differential calculus.
New videos are published every Monday and Thursday. The playlist for my "Calculus for ML" course is here.
More detail about my broader "ML Foundations" series and all of the associated open-source code is available in GitHub here.
Derivatives and Differentiation — Segment 2 of Subject 3, "Limits & Derivative
Today marks the beginning of a new thematic segment of videos in my ML Foundations series. This segment builds on the Limits content already covered to clearly illustrate how Differentiation works and how we find Derivatives.
Through a combination of color-coded equations, paper-and-pencil exercises, and hands-on Python code demos, the videos in this segment instill a deep understanding of how differentiation allows us to find derivatives.
More specifically, the videos cover:
• The Delta Method
• The Differentiation Equation
• Differentiation Notation
• Rules that enable us to quickly calculate the derivatives of a wide range of functions, including those found throughout machine learning
New videos are published every Monday and Thursday. The playlist for my Calculus for ML course is here.
More detail about my broader ML Foundations series and all of the associated open-source code is available in GitHub here.
Exercises on Limits
Final YouTube video from my thematic segment on Limits out today! It's a handful of comprehension exercises. Starting Thursday, we'll begin releasing videos from a new Calculus segment, on derivatives and differentiation.
We release new videos from my "Calculus for Machine Learning" course on YouTube every Monday and Thursday. The playlist is here.
The Machine Learning House
In last week’s Five-Minute Friday, I discussed how, in the data science field, the learning never stops. But there’s one big counterpoint: The foundational subjects that underlie the field barely change at all, decade after decade.
These subjects — linear algebra, calculus, probability, statistics, data structures, and algorithms — build a strong foundation for your “Machine Learning House”. Today's Five-Minute Friday articulates my perspective that investing time in studying these foundational subjects will reap great dividends throughout your data science career.
You can listen or watch here.
Calculating Limits
Today's video introduces Limits, a key stepping stone toward understanding Differential Calculus. This one has lots of interactive Python code demos and paper-and-pencil exercises to ensure learning the subject is both engaging and fun.
We release new videos from my "Calculus for Machine Learning" course on YouTube every Monday and Thursday. The playlist is here.
Calculus Applications
New YouTube video out today! In this one, I provide specific examples of how calculus is applied in the real world, with an emphasis on applications to machine learning.
The YouTube playlist for my "Calculus for Machine Learning" course is here.