Thanks to data science legend Hilary Mason and the engaging audience at the New York R Conference for making Friday's live-filmed episode of the SuperDataScience podcast an exhilarating and illuminating success ⚡️
Look out for Hilary's episode as #589, which will be released on July 5th.
Filtering by Category: Interview
Bayesian, Frequentist, and Fiducial Statistics in Data Science
Harvard stats prof Xiao-Li MENG founded the trailblazing Harvard Data Science Review. We cover that and why BFFs (Bayesians, frequentists and fiducial statisticians) should be BFFs (best friends forever).
Xiao-Li:
• Is the Founding Editor-in-Chief of the Harvard Data Science Review, a new publication in the vein of the renowned Harvard Business Review.
• Has been a full professor in Harvard’s Dept of Statistics for 20+ years.
• Chaired the Harvard Stats Dept for 7 years.
• Was Dean of Harvard’s Grad School of Arts and Sciences for 5 years.
• Has published 200+ journal articles on statistics, machine learning, and data science, and been cited over 25,000 times.
• Holds a PhD in Statistics from — yep! — Harvard.
Today’s episode will be of interest to anyone who’s keen to better understand the biggest challenges and most fascinating applications of data science today.
In the episode, Xiao-Li details:
• What the Harvard Data Science Review is, why he founded it, and the most popular topics covered by the Review so far.
• The concept of “data minding”.
• Why there’s no “free lunch” with data — tricky trade-offs abound no matter what.
• The surprising paradoxical downside of having lots of data.
• What the Bayesian, Frequentist, and Fiducial schools of statistics are and when each of them is most useful in data science.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Transforming Dentistry with A.I.
Engineer and computer scientist Dr. Wardah Inam has raised $79m in venture capital to transform dentistry with machine learning. Hear about it, as well as her tips for scaling an A.I. company, in this week's episode.
Wardah:
• Is Co-Founder/CEO of Overjet, which is transforming dentistry with ML.
• Co-founded uLink Technologies, a start-up behind A.I.-driven power grids.
• Served as Lead Product Manager at Q Bio, a healthcare A.I. start-up.
• Was a Postdoc in MIT’s renowned CSAIL (Computer Science and A.I. Lab).
• Holds an MIT PhD in electrical engineering and computer science.
Today’s episode focuses more on practical applications of ML and growing an A.I. company than getting into the nitty-gritty of ML models themselves, so it should be broadly appealing to both technically-oriented and business-oriented folks.
In the episode, Wardah details:
• How Overjet not only classifies images but quantifies dental diagnoses with computer vision, enabling models to answer questions like “how large is this cavity?”
• How natural language processing can be essential for determining the correct dental diagnosis.
• The data-labeling challenges firms like Overjet need to overcome to enable ML models to learn from noisy, real-world data.
• Her tips for building a successful A.I. business.
• What she looks for in the data scientists and software engineers she hires.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Scaling A.I. Startups Globally
Sensational A.I. entrepreneur Husayn Kassai co-founded Onfido while an undergrad and served as its CEO for ten years, raising $200m in venture capital. Hear his tips for scaling your own A.I. firm in this week's episode.
Husayn:
• Co-founded the ML company Onfido in 2010, while he was an undergraduate student at the University of Oxford.
• Served as Onfido’s CEO for ten years, overseeing $200m in venture capital raised, the team growing to over 400 employees, and the client base growing to over 1500 firms.
• Holds a degree in economics and management from Oxford.
• Served as the full-time President of the Oxford Entrepreneurs student society, which is how I got to know him more than a decade ago.
Today’s episode is non-technical and will appeal to anyone who’s interested in hearing tips and tricks for building a billion-dollar A.I. start-up from scratch.
In the episode, Husayn details:
• Tips for deciding on whether you need co-founders.
• How to choose your co-founders if you need them.
• Finding product-market fit.
• How to scale up a company.
• How to identify start-up opportunities.
• Why there’s never been a better time than now to found an A.I. startup.
• A look at his next startup, which is currently in stealth.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Optimizing Computer Hardware with Deep Learning
The polymath Dr. Magnus Ekman joins me from NVIDIA today to explain how machine learning is used to guide *hardware* architecture design and to provide an overview of his brilliant book "Learning Deep Learning".
Magnus:
• Is a Director of Architecture at NVIDIA (he's been there 12 years!)
• Previously worked at Samsung and Sun Microsystems.
• Was co-founder/CTO of the start-up SKOUT (acquired for $55m).
• Authored the epic, 700-page "Learning Deep Learning".
• Holds a Ph.D. in computer engineering from the Chalmers University of Technology and a masters in economics from Göteborg University.
Today’s episode has technical elements here and there but should largely be interesting to anyone who’s interested in hearing the latest trends in A.I., particularly deep learning, software and hardware.
In the episode, Magnus details:
• What hardware architects do.
• How ML can be used to optimize the design of computer hardware.
• The pedagogical approach of his exceptional deep learning book.
• Which ML users need to understand how ML models work.
• Algorithms inspired by biological evolution.
• Why Artificial General Intelligence won’t be obtained by increasing model parameters alone.
• Whether transformer models will entirely displace other deep learning architectures such as CNNs and RNNs.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Automating ML Model Deployment
Relative to training a machine learning model, getting it into production typically takes multiple times as much time and effort. Dr Doris Xin, the brilliant co-founder/CEO of Linea, has a near-magical, two-line solution.
In the episode, Doris details:
• How Linea reduces ML model deployment to two lines of Python code.
• The surprising extent of wasted computation she discovered when she analyzed over 3000 production pipelines at Google.
• Her experimental evidence that the total automation of ML model development is neither realistic nor desirable.
• What it’s like being the CEO of an exciting, early-stage tech start-up.
• Where she sees the field of data science going in the coming years and how you can prepare for it.
Today’s episode is more on the technical side so will likely appeal primarily to practicing data scientists, especially those that need to — or are interested in — deploying ML models into production.
Doris:
• Is co-founder and CEO of Linea, an early start-up that dramatically simplifies the deployment of machine learning models into production.
• Her alpha users include the likes of Twitter, Lyft, and Pinterest.
• Her start-up’s mission was inspired by research she conducted as a PhD student in computer science at the University of California, Berkeley.
• Previously she worked in research and software engineering roles at Google, Microsoft, Databricks, and LinkedIn.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Collaborative, No-Code Machine Learning
Emerging tools allow real-time, highly visual collaboration on data science projects — even in ways that allow those who code and those who don't to work together. Tim Kraska fills us in on how ML models enable this.
Tim:
• Is Associate Professor in the revered CSAIL lab at the Massachusetts Institute of Technology.
• Co-founded Einblick, a visual data computing platform that has received $6m in seed funding.
• Was previous a professor at Brown University, a visiting researcher at Google, and a postdoctoral researcher at Berkeley.
• Holds a PhD in computer science from ETH Zürich in Switzerland.
Today’s episode gets into technical aspects here and there, but will largely appeal to anyone who’s interested in hearing about the visual, collaborative future of machine learning.
In this episode, Tim details:
• How a tool like Einblick can simultaneously support folks who code as well as folks who’d like to leverage data and ML without code.
• How this dual no-code/Python code environment supports visual, real-time, click-and-point collaboration on data science projects.
• The clever database and ML tricks under the hood of Einblick that enable the tool to run effectively in real time.
• How to make data models more widely available in organizations.
• How university environments like MIT’s CSAIL support long-term innovations that can be spun out to make game-changing impacts.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
A.I. For Crushing Humans at Poker and Board Games
The first SuperDataScience episode filmed with a live audience! Award-winning researcher Dr. Noam Brown from Meta AI was the guest, filling us in on A.I. systems that beat the world's best at poker and other games.
We shot this episode on stage at MLconf in New York. This means that you’ll hear audience reactions in real-time and, near the end of the episode, many great questions from audience members once I opened the floor up to them.
This episode has some moments here and there that get deep into the weeds of machine learning theory, but for the most part today’s episode will appeal to anyone who’s interested in understanding the absolute cutting-edge of A.I. capabilities today.
In this episode, Noam details:
• What Meta AI (formerly Facebook AI Research) is, how it fits into Meta.
• His award-winning no-limit poker-playing algorithms.
• What game theory is and how he integrates it into his models.
• The algorithm he recently developed that can beat the world’s best players at “no-press” Diplomacy, a complex strategy board game.
• The real-world implications of his game-playing A.I. breakthroughs.
• Why he became a researcher at a big tech firm instead of academia.
Noam:
• Develops A.I. systems that can defeat the best humans at complex games that computers have hitherto been unable to succeed at.
• During his Ph.D. in computer science at Carnegie Mellon University, developed A.I. systems that defeated the top human players of no-limit poker — earning him a Science Magazine cover story.
• Also holds a master’s in robotics from Carnegie Mellon and a bachelor’s degree in math and computer science from Rutgers.
• Previously worked for DeepMind and the U.S. Federal Reserve Board.
Thanks to Alexander Holden Miller for introducing me to Noam and to Hannah Gräfin von Waldersee for introducing me to Alex!
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Open-Access Publishing
This week Dr. Amy Brand, the pioneering Director of The MIT Press and executive producer of documentary films, leads discussion of the benefits of — and innovations in — open-access publishing.
In the episode, Amy details:
• What open-access means.
• Why open-access papers, books, data, and code are invaluable for data scientists and anyone else doing research and development.
• The new metadata standard she developed to resolve issues around accurate attribution of who did what for a given academic publication.
• How we can change the STEM fields to be welcoming to everyone, including historically underrepresented groups.
• What it’s like to devise and create an award-winning documentary film.
Amy:
• Leads one of the world’s most influential university presses as the Director and Publisher of the MIT Press.
• Created a new open-access business model called Direct to Open.
• Is Co-Founder of Knowledge Futures Group, a non-profit that provides technology to empower organizations to build the digital infrastructure required for open-access publishing.
• Launched MIT Press Kids, the first university+kids publishers collab.
• Was the executive producer of "Picture A Scientist", a documentary that was selected to premiere at the prestigious Tribeca Film Festival and was recognized with the 2021 Kavli Science Journalism Award.
• She holds a PhD in Cognitive Science from MIT.
Today’s episode is well-suited to a broad audience, not just data scientists.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
AGI: The Apocalypse Machine
Jeremie Harris's work on A.I. could dramatically alter your perspective on the field of data science and the bewildering — perhaps downright frightening — impact you and A.I. could make together on the world.
Jeremie:
• Recently co-founded Mercurius, an A.I. safety company.
• Has briefed senior political and policy leaders around the world on long-term risks from A.I., including senior members of the U.K. Cabinet Office, the Canadian Cabinet, as well as the U.S. Departments of State, Homeland Security and Defense.
• Is Host of the excellent Towards Data Science podcast.
• He previously co-founded SharpestMinds, a Y Combinator-backed mentorship marketplace for data scientists.
• He proudly dropped out of his quantum mechanics PhD to found SharpestMinds.
• He hold a Master’s in biological physics from the University of Toronto.
In this episode, Jeremie details:
• What Artificial General Intelligence (AGI) is
• How the development of AGI could happen in our lifetime and could present an existential risk to humans, perhaps even to all life on the planet as we know it.
• How, alternatively, if engineered properly, AGI could herald a moment called the singularity that brings with it a level of prosperity that is not even imaginable today.
• What it takes to become an AI safety expert yourself in order to help align AGI with benevolent human goals
• His forthcoming book on quantum mechanics
• Why almost nobody should do a PhD
Today’s episode is deep and intense, but as usual it does still have a lot of laughs, and it should appeal broadly, no matter whether you’re a technical data science expert already or not.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Clem Delangue on Hugging Face and Transformers
In today's SuperDataScience episode, Hugging Face CEO Clem Delangue fills us in on how open-source transformer architectures are accelerating ML capabilities. Recorded for yesterday's ScaleUp:AI conference in NY.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
How to Rock at Data Science — with Tina Huang
Can you tell I had fun filming this episode with Tina Huang, YouTube data science superstar (293k subscribers)? In it, we laugh while discussing how to get started in data science and her learning/productivity tricks.
Tina:
• Creates YouTube videos with millions of views on data science careers, learning to code, SQL, productivity, and study techniques.
• Is a data scientist at one of the world's largest tech companies (she keeps the firm anonymous so she can publish more freely).
• Previously worked at Goldman Sachs and the Ontario Institute for Cancer Research.
• Holds a Masters in Computer and Information Technology from the University of Pennsylvania and a bachelors in Pharmacology from the University of Toronto
In this episode, Tina details:
• Her guidance for preparing for a career in data science from scratch.
• Her five steps for consistently doing anything.
• Her strategies for learning effectively and efficiently.
• What the day-to-day is like for a data scientist at one of the world’s largest tech companies.
• The software languages she uses regularly.
• Her SQL course.
• How her science and computer science backgrounds help her as a data scientist today.
Today’s episode should be appealing to a broad audience, whether you’re thinking of getting started in data science, are already an experienced data scientist, or you’re more generally keen to pick up career and productivity tips from a light-hearted conversation.
Thanks to Serg Masís, Brindha Ganesan and Ken Jee for providing questions for Tina... in Ken's case, a very silly question indeed.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Engineering Data APIs
How you design a data API from scratch and how a data API can leverage machine learning to improve the quality of healthcare delivery are topics covered by Ribbon Health CTO Nate Fox in this week's episode.
Ribbon Health is a New York-based API platform for healthcare data that has raised $55m, including from some of the biggest names in venture capital like Andreessen Horowitz and General Catalyst.
Prior to Ribbon, Nate:
• Worked as an Analytics Engineer at the marketing start-up Unified.
• Was a Product Marketing Manager at Microsoft.
• Obtained a mechanical engineering degree from the Massachusetts Institute of Technology and an MBA from Harvard Business School.
In this episode, Nate details:
• What APIs ("application programming interfaces") are.
• How you design a data API from scratch.
• How Ribbon Health’s data API leverages machine learning models to improve the quality of healthcare delivery.
• How to ensure the uptime and reliability of APIs.
• How scientists and engineers can make a big social impact in health technology.
• His favorite tool for easily scaling up the impact of a data science model to any number of users.
• What he looks for in the data scientists he hires.
Today’s episode has some technical data science and software engineering elements here and there, but much of the conversation should be interesting to anyone who’s keen to understand how data science can play a big part in improving healthcare.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
GPT-3 for Natural Language Processing
With its human-level capacity on tasks as diverse as question-answering, translation, and arithmetic, GPT-3 is a game-changer for A.I. This week's brilliant guest, Melanie Subbiah, was a lead author of the GPT-3 paper.
GPT-3 is a natural language processing (NLP) model with 175 billion parameters that has demonstrated unprecedented and remarkable "few-shot learning" on the diverse tasks mentioned above (translation between languages, question-answering, performing three-digit arithmetic) as well as on many more (discussed in the episode).
Melanie's paper sent shockwaves through the mainstream media and was recognized with an Outstanding Paper Award from NeurIPS (the most prestigious machine learning conference) in 2020.
Melanie:
• Developed GPT-3 while she worked as an A.I. engineer at OpenAI, one of the world’s leading A.I. research outfits.
• Previously worked as an A.I. engineer at Apple.
• Is now pursuing a PhD at Columbia University in the City of New York specializing in NLP.
• Holds a bachelor's in computer science from Williams College.
In this episode, Melanie details:
• What GPT-3 is.
• Why applications of GPT-3 have transformed not only the field of data science but also the broader world.
• The strengths and weaknesses of GPT-3, and how these weaknesses might be addressed with future research.
• Whether transformer-based deep learning models spell doom for creative writers.
• How to address the climate change and bias issues that cloud discussions of large natural language models.
• The machine learning tools she’s most excited about.
This episode does have technical elements that will appeal primarily to practicing data scientists, but Melanie and I put an effort into explaining concepts and providing context wherever we could so hopefully much of this fun, laugh-filled episode will be engaging and informative to anyone who’s keen to learn about the start of the art in natural language processing and A.I.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
SuperDataScience Podcast LIVE at MLconf NYC and ScaleUp:AI!
It's finally happening: the first-ever SuperDataScience episodes filmed with a live audience! On March 31 and April 7 in New York, you'll be able to react to guests and ask them questions in real-time. I'm excited 🕺
The first live, in-person episode will be filmed at MLconf NYC on March 31st. The guest will be Alexander Holden Miller, an engineering manager at Facebook A.I. Research who leads bleeding-edge work at mind-blowing intersections of deep reinforcement learning, natural language processing, and creative A.I.
A week later on April 7th, another live, in-person episode will be filmed at ScaleUp:AI. I'll be hosting a panel on open-source machine learning that features Hugging Face CEO Clem Delangue.
I hope to see you at one of these conferences, the first I'll be attending in over two years! Can't wait. There are more live SuperDataScience episodes planned for New York this year and hopefully it won't be long before we're recording episodes live around the world.
Effective Pandas
Seven-time bestselling author Matt Harrison reveals his top tips and tricks to enable you to get the most out of Pandas, the leading Python data analysis library. Enjoy!
Matt's books, all of which have been Amazon best-sellers, are:
1. Effective Pandas
2. Illustrated Guide to Learning Python 3
3. Intermediate Python
4. Learning the Pandas Library
5. Effective PyCharm
6. Machine Learning Pocket Reference
7. Pandas Cookbook (now in its second edition)
Beyond being a prolific author, Matt:
• Teaches "Exploratory Data Analysis with Python" at Stanford
• Has taught Python at big organizations like Netflix and NASA
• Has worked as a CTO and Senior Software Engineer
• Holds a degree in Computer Science from Stanford University
On top of Matt's tips for effective Pandas programming, we cover:
• How to squeeze more data into Pandas on a given machine.
• His recommended software libraries for working with tabular data once you have too many data to fit on a single machine.
• How having a computer science education and having worked as a software engineer has been helpful in his data science career.
This episode will appeal primarily to practicing data scientists who are keen to learn about Pandas or keen to become an even deeper expert on Pandas by learning from a world-leading educator on the library.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Sports Analytics and 66 Days of Data with Ken Jee
Ken Jee — sports analytics leader, originator of the ubiquitous #66daysofdata hashtag, and data-science YouTube superstar (190k subscribers) — is the guest for this week's fun and candid episode ⛳️🏌️
In addition to his YouTube content creation, Ken:
• Is Head of Data Science at Scouts Consulting Group LLC.
• Hosts the "Ken's Nearest Neighbors" podcast.
• Is Adjunct Professor at DePaul University.
• Holds a Masters in Computer Science with an AI/ML concentration.
• Is renowned for starting #66daysofdata, which has helped countless people create the habit of learning and working on data science projects every day.
Today’s episode should be broadly appealing, whether you’re already an expert data scientist or just getting started.
In this episode, Ken details:
• What sports analytics is and specific examples of how he’s made an impact on the performance of athletes and teams with it.
• Where the big opportunities lie in sports analytics in the coming years.
• His four-step process for how someone should get started in data science today.
• His favorite tools for software scripting as well as for production code development.
• How the #66daysofdata can supercharge your capacity as a data scientist whether you’re just getting started or are already an established practitioner.
Thanks to Christina, 🦾 Ben, Serg, Arafath, and Luke for great questions for Ken!
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
The Statistics and Machine Learning Quests of Dr. Josh Starmer
Holy crap, it's here! Joshua Starmer, the creative genius behind the StatQuest YouTube channel (over 675k subscribers!) joins me for an epic episode on stats, ML, and his learning and communication secrets.
Dr. Starmer:
• Provides uniquely clear statistics and ML education via his StatQuest You Tube channel.
• Is Lead A.I. Educator at Grid.ai, a company founded by the creators of PyTorch Lightning that enables you to take an ML model you have on your laptop and train it seamlessly on the cloud.
• Was a researcher at the University of North Carolina at Chapel Hill for 13 years, first as a postdoc and then as an assistant professor, applying statistics to genetic data.
• Holds a PhD in Biomathematics and Computational Biology.
• Holds two bachelor degrees, one in Computer Science and another in Music.
In this episode filled with silliness and laughs from start to finish, Josh fills us in on:
• His learning and communication secrets.
• The single tool he uses to create YouTube videos with over a million views.
• The software languages he uses daily as a data scientist.
• His forthcoming book, "The StatQuest Illustrated Guide to Machine Learning".
• Why he left his academic career.
• A question you might want to ask yourself to check in on whether you’re following the right life path yourself.
Today’s epic episode is largely high level and so will appeal to anyone who likes to giggle while hearing from one of the most intelligent and creative minds in education on data science, machine learning, music, genetics, and the intersection of all of the above.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
Thanks to Serg, Nikolay, Phil, Jonas, and Suddhasatwa for great audience questions!
Engineering Natural Language Models — with Lauren Zhu
Zero-shot multilingual neural machine translation, how to engineer natural language models, and why you should use PCA to choose your job are topics covered this week by the fun and brilliant Lauren Zhu.
Lauren:
• Is an ML Engineer at Glean, a Silicon Valley-based natural language understanding company that has raised $55m in venture capital.
• Prior to Glean, she worked as an ML Intern at both Apple and the autonomous vehicle subsidiary of Ford Motor Company; as a software engineering intern at Qualcomm; and as an A.I. Researcher at The University of Edinburgh.
• Holds BS and MS degrees in Computer Science from Stanford
• Served as a teaching assistant for some of Stanford University’s most renowned ML courses such as "Decision Making Under Uncertainty" and "Natural Language Processing with Deep Learning".
In this episode, Lauren details:
• Where to access free lectures from Stanford courses online.
• Her research on Zero-Shot Multilingual Neural Machine Translation.
• Why you should use Principal Component Analysis to choose your job.
• The software tools she uses day-to-day at Glean to engineer natural language processing ML models into massive-scale production systems.
• Her surprisingly pleasant secret to both productivity and success.
There are parts of this episode that will appeal especially to practicing data scientists but much of the conversation will be of interest to anyone who enjoys a laugh-filled conversation on A.I., especially if you’re keen to understand the state-of-the-art in applying ML to natural language problems.
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.
How Genes Influence Behavior — with Prof. Jonathan Flint
How do genes influence behavior? This week's guest, Prof. Jonathan Flint, fills us in, with a particular focus on how machine learning is uncovering connections between genetics and psychiatric disorders like depression.
In this episode, Prof. Flint details:
• How we know that genetics plays a role in complex human behaviors incl. psychiatric disorders like anxiety, depression, and schizophrenia.
• How data science and ML play a prominent role in modern genetics research and how that role will only increase in years to come.
• The open-source software libraries that he uses for data modeling.
• What it's like day-to-day for a world-class medical sciences researcher.
• A single question you can ask to prevent someone committing suicide.
• How the future of psychiatric treatments is likely to be shaped by massive-scale genetic sequencing and everyday consumer technologies.
Jonathan:
• Is Professor-in-Residence at the University of California, Los Angeles, specializing in Neuroscience and Genetics.
• Leads a gigantic half-billion dollar project to sequence the genomes of hundreds of thousands of people around the world in order to better understand the genetics of depression.
• Originally trained as a psychiatrist, he established himself as a pioneer in the genetics of behavior during a thirty-year stint as a medical sciences researcher at the University of Oxford.
• Has authored over 500 peer-reviewed journal articles and his papers have been cited an absurd 50,000 times.
• Wrote a university-level textbook called "How Genes Influence Behavior", which is now in its second edition.
Today’s episode mentions a few technical data science details here and there but the episode will largely be of interest to anyone who’s keen to understand how your genes influence your behavior, whether you happen to have a data science background or not.
Thanks to Mohamad, Hank, and Serg for excellent audience questions!
The SuperDataScience show's available on all major podcasting platforms, YouTube, and at SuperDataScience.com.